

Lewatit® S 1667 is a strongly acidic cation exchange resin with beads of uniform size (monodisperse) based on a styrene-divinylbenzene copolymer. The monodisperse beads are chemically and osmotically very stable. The optimized kinetics lead to an increased operating capacity compared to ion exchange resins with heterodisperse bead size distribution.

Lewatit® S 1667 is especially applicable for:

- » softening of industrial water
- » softening in dishwater-systems

Lewatit® S 1667 is adding special features to the resin bed:

- » high exchange flow rates during regeneration and loading
- » good utilization of the total capacity
- » low rinse water demand
- » homogeneous throughput of regenerants, water and solutions; therefore a homogeneous working zone
- » nearly linear pressure drop gradient for the whole bed depth; therefore operation with higher bed depth possible

The special properties of this product can only be fully utilized if the technology and process used correspond to the current state-of-the -art. Further advice in this matter can be obtained from Lanxess, Business Unit Ion Exchange Resins.

This document contains important information and must be read in its entirety.

Edition: 2011-12-06

General Description

Ionic form as shipped	Na⁺
Functional group	sulfonic acid
Matrix	crosslinked polystyrene
Structure	gel type beads
Appearance	black

Physical and Chemical Properties

		metric units			
Uniformity Coefficient	*	max.		1.1	
Mean bead size*		mm	0.6	1 (+/- 0.	05)
Bulk density	(+/- 5 %)	g/l		840	
Density		approx. g/ml		1.3	
Water retention		wt. %		40 - 48	
Total capacity*		min. eq/l		2.1	
Volume change	Na+> H+	max. vol. %		10	
Stability	at pH-range			0 - 14	
Storability	of the product	max. years	2		
Storability	temperature range	∞	-20	-	40

^{*} Specification values subjected to continuous monitoring.

This document contains important information and must be read in its entirety.

Edition: 2011-12-06

Recommended Operating Conditions*

		metric units	
Operating temperature		max. °C	120
Operating pH-range			0 - 14
Bed depth		min. mm	800
Specific pressure drop	(15 ℃)	approx. kPa*h/m²	1.0
Pressure drop		max. kPa	200
Linear velocity	operation	max. m/h	60
Linear velocity	backwash (20 ℃)	approx. m/h	10 - 12
Bed expansion	(20 ℃, per m/h)	approx. vol. %	4
Freeboard	backwash (extern / intern)	vol. %	60
Regenerant	· · · · · · · · · · · · · · · · · · ·		NaCl
Counter current regeneration	level	approx. g/l	70 - 120
Regenerant	concentration	approx. wt. %	8 - 10
Co current regeneration	level	approx. g/l	200
Linear velocity	regeneration	approx. m/h	5
Linear velocity	rinsing	approx. m/h	5
Rinse water requirement	slow / fast	approx. BV	4

Recommended Start-up Conditions*

Rinsing		rawwater
Linear flow rate	m/h	5 - 8
Rinse water requirement	approx. BV	20
Temp. of rinse water	°C	Operating temperatures
Regeneration	with double of operating quantity	see operating conditions
Rinsing	with double of operating quantity	see operating conditions

Edition: 2011-12-06

Additional Information & Regulations

Safety precautions

Strong oxidants, e.g. nitric acid, can cause violent reactions if they come into contact with ion exchange resins.

Toxicity

The safety data sheet must be observed. It contains additional data on product description, transport, storage, handling, safety and ecology.

Disposal

In the European Community Ion exchange resins have to be disposed, according to the European waste nomenclature which can be accessed on the internet-site of the European Union.

Storage

It is recommended to store ion exchange resins at temperatures above the freezing point of water under roof in dry conditions without exposure to direct sunlight. If resin should become frozen, it should not be mechanically handled and left to thaw out gradually at ambient temperature. It must be completely thawed before handling or use. No attempt should be made to accelerate the thawing process.

This information and our technical advice — whether verbal, in writing or by way of trials — are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to check its validity and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.

This document contains important information and must be read in its entirety.

Edition: 2011-12-06

For more information or a quote, please use the