

Lewatit® MonoPlus TP 207 XL is a weakly acidic, macroporous cation exchange resin with chelating iminodiacetate groups for the selective extraction of heavy metal cations from weakly acidic to weakly basic solutions. Divalent cations are removed from neutralized waters in the following order:

Copper > Vanadium (VO) > Uranium (UO_2) > Lead > Nickel > Zinc > Cadmium > Iron(II) > Beryllium > Manganese > Calcium > Magnesium > Strontium > Barium >>> Sodium.

Lewatit® MonoPlus TP 207 XL is of monodispersed bead size distribution, means beads of uniform size. The especially enlarged bead size is combined with a high mechanical and osmotic stability. The resin is characterized by high kinetics leading to a good utilization of the available capacity. Therefore it is in particular suitable for the use in the following application:

» Concentration, extraction and recovery of heavy metals from hydrometallurgical solutions, especially by Resin-in-Pulp processes

The special properties of this product can only be fully utilized if the technology and process used correspond to the current state-of-the -art. Further advice in this matter can be obtained from Lanxess, Business Unit Ion Exchange Resins.

This document contains important information and must be read in its entirety.

Edition: 2011-10-13

General Description

Ionic form as shipped	Na+	
Functional group	iminodiacetic acid	
Matrix	crosslinked polystyrene	
Structure	macroporous	
Appearance	beige, opaque	

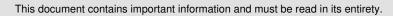
Physical and Chemical Properties

		metric units					
Total capacity*	H-Form	min. eq/l	2.0				
Uniformity Coefficient*		max.	1.1			1.1	
Mean bead size*		mm	0.79 (+/- 0.05)				
Bulk density	(+/- 5 %)	g/l	720				
Density		approx. g/ml	1.1				
Water retention		wt. %	55 - 60				
Volume change	Na+> H+	max. vol. %	-25				
Stability	at pH-range		0 - 14				
Storability	of the product	max. years	2				
Storability	temperature range	Ç	- 20 - +40				

^{*} Specification values subjected to continuous monitoring.

This document contains important information and must be read in its entirety.

Edition: 2011-10-13



Recommended Operating Conditions*

	max. ℃	1.5	80	
		1.5		
		1.5 - 9		
	min. mm	1000		
(15 ℃)	approx. kPa*h/m²	1.1		
	max. kPa	250		
backwash (20 °C)	approx. m/h	10		
(20 °C, per m/h)	approx. vol. %	4		
backwash (extern / intern)	vol. %		80	
,		HCI	or	H ₂ SO ₄
(depending on application)	approx. wt. %	5	-	20
regeneration	approx. m/h		5	
rinsing	approx. m/h	5		
		NaOH		
concentration	approx. wt. %	4		
conditioning	approx. m/h	5		
rinsing	approx. m/h		5	
slow / fast	approx. BV		5	
	approx. BV		5	
<u> </u>	packwash (20 °C) 20 °C, per m/h) packwash extern / intern) depending on application) egeneration insing concentration conditioning insing	approx. kPa*h/m² max. kPa packwash (20 °C) 20 °C, per m/h) packwash extern / intern) depending on approx. wt. % application) egeneration insing approx. m/h concentration approx. m/h conditioning approx. m/h	approx. kPa*h/m² max. kPa packwash (20 °C) approx. m/h 20 °C, per m/h) packwash extern / intern) HCI depending on approx. wt. % application) egeneration insing approx. m/h concentration approx. m/h conditioning approx. m/h	15 ℃) approx. kPa*h/m² 1.1 max. kPa 250 packwash (20 ℃) approx. m/h 10 20 ℃, per m/h) approx. vol. % 4 packwash vol. % 80 extern / intern) HCI or depending on approx. wt. % 5 - application) egeneration approx. m/h 5 insing approx. m/h 5 concentration approx. wt. % 4 conditioning approx. m/h 5 insing approx. m/h 5 conditioning approx. m/h 5 insing approx. m/h 5 slow / fast approx. BV 5

^{*}e. g. for Resin-in-Pulp

Edition: 2011-10-13

Additional Information & Regulations

Safety precautions

Strong oxidants, e.g. nitric acid, can cause violent reactions if they come into contact with ion exchange resins.

Toxicity

The safety data sheet must be observed. It contains additional data on product description, transport, storage, handling, safety and ecology.

Disposal

In the European Community Ion exchange resins have to be disposed, according to the European waste nomenclature which can be accessed on the internet-site of the European Union.

Storage

It is recommended to store ion exchange resins at temperatures above the freezing point of water under roof in dry conditions without exposure to direct sunlight. If resin should become frozen, it should not be mechanically handled and left to thaw out gradually at ambient temperature. It must be completely thawed before handling or use. No attempt should be made to accelerate the thawing process.

This information and our technical advice — whether verbal, in writing or by way of trials — are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to check its validity and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.

This document contains important information and must be read in its entirety.

Edition: 2011-10-13

For more information or a quote, please use the