



Lewatit<sup>®</sup> C 249 is a premium grade, standard cross-linked, gel, strong acid cation exchange resin based on a styrene / DVB polymer. Lewatit<sup>®</sup> C 249 is especially suited for industrial water treatment applications, including demineralization, service exchange, and softening. Lewatit<sup>®</sup> C 249 can be used in single bed and mixed bed applications. Lewatit<sup>®</sup> C 249 exhibits a high ion exchange capacity combined with excellent mechanical and osmotic strength for a long operating life. Lewatit<sup>®</sup> C 249 is supplied in a heterodispersed particle size distribution as spherical beads in the fully swollen moist sodium form. Lewatit<sup>®</sup> C 249 is prepared with a minimum amount of fines (-50 mesh particles) resulting in low pressure losses during service.

Lewatit<sup>®</sup> C 249 is supplied in the sodium form. Lewatit<sup>®</sup> C 249 is also available in the hydrogen form, designated as Lewatit<sup>®</sup> C 267.

The special properties of this product can only be fully utilized if the technology and process used correspond to the current state-of-the -art. Further advice in this matter can be obtained from Lanxess, Business Unit Ion Exchange Resins.



# PRODUCT INFORMATION LEWATIT® C 249



## **General Description**

| Ionic form as shipped | Na⁺                |
|-----------------------|--------------------|
| Functional group      | Sulfonic acid      |
| Matrix                | DVB / Styrene      |
| Structure             | Gel                |
| Appearance            | Brown, translucent |

## Physical and Chemical Properties

|                         |        |                                  | metric units |                 |
|-------------------------|--------|----------------------------------|--------------|-----------------|
| Uniformity Coefficient* |        |                                  | max.         | 1.6             |
| Bead size*              | > 90 % |                                  | mm           | 0.4 - 1.25      |
| Effective size          |        |                                  | mm           | 0.50 (+/- 0.06) |
| Bulk density            |        | (+/- 5 %)                        | g/l          | 832             |
| Density                 |        |                                  | approx. g/ml | 1.26            |
| Water retention         |        |                                  | wt. %        | 45 - 48         |
| Total capacity*         |        |                                  | min. eq/l    | 2.0             |
| Volume change           |        | Na <sup>+</sup> > H <sup>+</sup> | max. vol. %  | 7               |
| Stability               |        | at pH-range                      |              | 0 - 14          |
| Stability               |        | temperature range                | °C           | 1 - 140         |
| Storability             |        | of the product                   | max. years   | 2               |
| Storability             |        | temperature range                | °C           | -20 / 40        |

\* Specification values subjected to continuous monitoring.



# PRODUCT INFORMATION LEWATIT® C 249



## **Recommended Operating Conditions\***

|                         |                    | metric units      |                  |
|-------------------------|--------------------|-------------------|------------------|
| Operating temperature   |                    | max. ℃            | 140              |
| Operating pH-range      |                    |                   | 0 - 14           |
| Bed depth               |                    | min. mm           | 800              |
| Pressure drop           | 15 ℃               | max. kPa          | 280              |
| Linear velocity         | exhaustion         | max. m/h          | 5 - 50           |
| Bed expansion           | backwash (20 °C)   | approx. % per m/h | 4                |
| Freeboard               | backwash           | vol. %            | 65 - 75          |
| Volumetric flow rate    | exhaustion         | BV/h              | 8 - 48           |
| Regenerant              | type               |                   | NaCl / KCl       |
| Regenerant              | level              | approx. g/l       | 64 - 320         |
| Regenerant              | concentration      | approx. wt. %     | 8 - 13           |
| Linear velocity         | regeneration       | m/h               | 1 - 10           |
| Linear velocity         | rinse, slow / fast | m/h               | 1 - 10 / 5 - 50  |
| Volumetric flow rate    | regeneration       | BV/h              | 4 - 12           |
| Volumetric flow rate    | rinse, slow / fast | approx. BV/h      | 2.5 - 8 / 8 - 48 |
| Rinse water requirement | slow / fast        | approx. BV        | 1 - 2 / 2 - 5    |
| Regenerant              | type               |                   | $HCI / H_2SO_4$  |
| Regenerant              | level              | approx. g/l       | 48 - 320         |
| Regenerant              | concentration      | approx. wt. %     | 0.5 - 6          |
| Linear velocity         | regeneration       | m/h               | 1 - 10           |
| Linear velocity         | rinse, slow / fast | m/h               | 1 - 10 / 5 - 50  |
| Volumetric flow rate    | regeneration       | BV/h              | 4 - 12           |
| Volumetric flow rate    | rinse, slow / fast | approx. BV/h      | 2.5 - 8 / 8 - 48 |
| Rinse water requirement | slow / fast        |                   | 1 - 2 / 2 - 5    |

\* The recommended operating conditions refer to the use of the product under normal operating conditions. It is based on tests in pilot plants and data obtained from industrial applications. However, additional data are needed to calculate the resin volumes required for ion exchange units. These data are to be found in our Technical Information Sheets.





## Additional Information & Regulations

### Safety precautions

Strong oxidants, e.g. nitric acid, can cause violent reactions if they come into contact with ion exchange resins.

### Toxicity

The safety data sheet must be observed. It contains additional data on product description, transport, storage, handling, safety and ecology.

### Disposal

In the European Community Ion exchange resins have to be disposed, according to the European waste nomenclature which can be accessed on the internet-site of the European Union.

#### Storage

It is recommended to store ion exchange resins at temperatures above the freezing point of water under roof in dry conditions without exposure to direct sunlight. If resin should become frozen, it should not be mechanically handled and left to thaw out gradually at ambient temperature. It must be completely thawed before handling or use. No attempt should be made to accelerate the thawing process.

This information and our technical advice – whether verbal, in writing or by way of trials – are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to check its validity and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.





For more information or a quote, please use the