

LENNTECH

info@lenntech.com Tel. +31-152-610-900 www.lenntech.com Fax. +31-152-616-289

FILMTEC Membranes

Water Chemistry and Pretreatment: Calcium Phosphate Scale Prevention

Calcium Phosphate Scale Prevention

Calcium phosphate fouling was not common until reverse osmosis technology was widely applied to municipal wastewater. Due to water shortages, municipal waste water recycle or reuse has become one a major application area of reverse osmosis. Along with this new application, preventive actions for calcium phosphate scaling are needed.

Phosphorus is a common element in nature and is widely distributed in many minerals. In natural water and waste water streams, phosphorus compounds exist in the following forms: 18

- Particulate phosphate
- Orthophosphate (PO₄³⁻): Orthophosphates may be present as H₃PO₄, H₂PO₄⁻, HPO₄²⁻, and PO₄³⁻ depending on pH. H₂PO₄⁻ and HPO₄²⁻ are the prevailing species in neutral waste water.
- Polyphosphates: Important components in textile washing powders and other detergents. Depending on the product, they may contain 2–7 P atoms.
- Organic phosphorus: Phosphorus is an essential element for living organisms.
- The most common mineral form of phosphorus is apatite, which is a calcium phosphate with variable amounts of OH⁻, Cl⁻, and F⁻ (hydroxy-, chloro-, or fluoroapatite). Some other phosphate minerals contain aluminum and/or iron. Because of their low solubility, the following phosphate compounds can be considered as causes of phosphate scaling in an RO/NF operation (see Table 2.8).

Table 2.8 Low solubility phosphate compounds

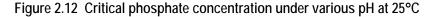
Compound	Formula	рК _{sp}	
Brushite	CaHPO ₄ ·2H ₂ O	6.68	
Calcium phosphate	Ca ₃ (PO ₄) ₂	28.9	
Octacalcium phosphate	Ca₄H(PO₄)₃⋅3H₂O	46.9	
Hydroxyapatite	Ca₅(PO₄)₃OH	57.74	
Fluoroapatite	Ca ₅ (PO ₄) ₃ F	60	
Magnesium ammonium phosphate	MgNH ₄ PO ₄	12.6	
Aluminum phosphate	AIPO ₄	20	
Iron phosphate	FePO ₄	15	

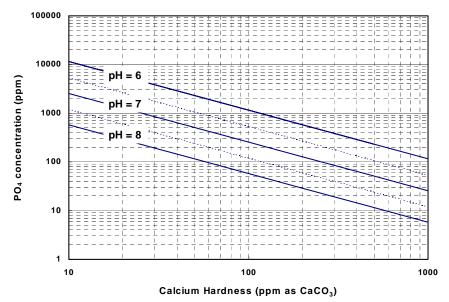
Calcium phosphate and apatites are less soluble in neutral and alkaline conditions and dissolve in acid /<u>18</u>. Aluminum and iron phosphates, however, are less soluble at moderately acidic conditions. Thus it is important to remove aluminum and iron in a pretreatment step as well. Because of the complexity of phosphate chemistry, it is not easy to predict a threshold level of phosphate scaling. The calcium phosphate stability index (SI), however, was proposed by Kubo et al /<u>19</u>. The calcium phosphate stability index is determined by the levels of calcium and phosphate present, pH, and temperature. A negative SI signifies a low potential for calcium phosphate scaling; a positive value indicates the potential for calcium phosphate scaling. SI is determined by the following equation:

 $SI = pH_a - pH_c$

where:

 pH_a = actual pH of a feed water


 pH_c = critical pH calculated by the following experimental equation:


$$pH_{c} = \frac{11.755 - \log(CaH) - \log(PO_{4}) - 2\log t}{0.65}$$

where :

CaH = Calcium hardness as ppm CaCO₃ PO₄ = Phosphate concentration as ppm PO₄ t = Temperature as °C

Figure 2.12 shows the effect of critical phosphate concentrations of $Ca_3(PO_4)_2$ scaling on feed calcium hardness and pH based on the equation.

To minimize the risk of phosphate scaling, it is important to reduce not only orthophosphate, but also calcium, fluoride, and aluminum concentration. A low feed pH helps to control phosphate scaling. Appropriate commercial antiscalants good for phosphate scaling are also available.

Phosphate scaled membranes are best cleaned at low pH - see <u>*Cleaning Chemicals</u>* (Section 6.8).</u>

Notice: The use of this product in and of itself does not necessarily guarantee the removal of cysts and pathogens from water. Effective cyst and pathogen reduction is dependent on the complete system design and on the operation and maintenance of the system.

Notice: No freedom from any patent owned by Seller or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other governmental enactments. Seller assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

 For more information about FILMTEC

 membranes, call the Dow Liquid

 Separations business:

 North America:
 1-800-447-4369

 Latin America:
 (+55) 11-5188-9222

 Europe:
 (+32) 3-450-2240

 Pacific:
 +60 3 7958 3392

 Japan:
 +813 5460 2100

 China:
 +86 21 2301 9000

FILMTEC[™] Membranes

http://www.filmtec.com