

Product Data Sheet

AMBERLITE™ HPR6700 Ion Exchange Resin

Acrylic, Gel, Weak Base Anion Exchange Resin for Industrial Demineralization Applications

Description	AMBERLITE [™] HPR6700 Ion Exchange Resin is a high-quality resin for use in industrial demineralization applications when high performance and cost-effective operation is required. The chemical properties and particle size of the resin have been balanced to combine a high operating capacity with low pressure drop, while reducing chemical regenerant and water usage.
	Weak base anion resins are well-suited for use with strong base anion resins to improve overall efficiency and throughput of a demineralization system. Acrylic weak base anion resins effectively remove mineral acids as well as carbon dioxide and organics, reducing the ionic load on the strong base anion resin and also protecting it from organic fouling. The weak base anion resin increases a system's overall capacity to remove organics.
	AMBERLITE HPR6700 has exceptional physical stability and organic fouling resistance. The hydrophilic acrylic structure provides unique chemical and physical properties enabling the resin to be operated under continuous high load of natural organic compounds when temperatures do not consistently exceed 35°C (95°F).
Applications	 Demineralization, ideally when treating water with: High organic fouling potential High percentage of mineral acidity (FMA) Relatively high remaining carbon dioxide content System layouts without a degasifier
System Designs	 Co-current Counter-current / Hold-down Packed beds
Historical Reference	AMBERLITE™ HPR6700 Ion Exchange Resin has previously been sold as AMBERLITE™ IRA67RF Ion Exchange Resin.

Typical Physical and Chemical **Properties****

Physical Properties	
Copolymer	Crosslinked acrylic
Matrix	Gel
Туре	Weak base anion
Functional Group	Tertiary amine
Physical Form	White, translucent, spherical beads
Chemical Properties	
Ionic Form as Shipped	Free base (FB)
Total Exchange Capacity	≥ 1.60 eq/L (FB form)
Water Retention Capacity	56.0 – 62.0% (FB form)
Particle Size [‡]	
Particle Diameter §	700 – 900 μm
Uniformity Coefficient	≤ 1.70
< 300 µm	≤ 0.2%
> 1180 µm	≤ 15.0%
Stability	
Whole Uncracked Beads	≥ 95%
Swelling	$FB \rightarrow CI^- \le 20\%$
Density	
Particle Density	1.07 g/mL
Shipping Weight	660 g/L

[‡] Particle size distribution is tailored for packed bed operation.
 [§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Suggested	Temperature Range (FB form)	5 – 60°C (41 – 140°F)
Operating	pH Range	
Conditions**		0 – 6
	•	0 – 14
	For additional information regarding recomm conditions, and regeneration conditions for treatment, please refer to our Tech Fact.	nended minimum bed depth, operating <mark>separate beds</mark> (Form No. 177-03729) in water
Hydraulic Characteristics	Estimated bed expansion of AMBERLITE™ backwash flowrate and temperature is show	HPR6700 Ion Exchange Resin as a function of vn in Figure 1.
	• •	IPR6700 as a function of service flowrate and essure drop estimates are valid at the start of the sified bed. Figure 2: Pressure Drop Temperature = 10 – 60°C (50 – 140°F)
	gpm/ft ² 0 1 2 3 4 10°C	gpm/ft² 0 4 8 12 16 20 24
		c 1.5 - 6.0
	100	
	40'' 40'' 40'' 40'' 40'' 50'' 60''' 60''' 60''' 60''' 60'''' 60'''' 60'''''' 60''''''''''	c sesting the second se
		c E 0.5 0.0 0.0 0.0
	0 2 4 6 8 10 12 m/h	0 10 20 30 40 50 60 m/h
	Flowrate	Flowrate

Product Stewardship	Dow has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with Dow products—from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.
Customer Notice	Dow strongly encourages its customers to review both their manufacturing processes and their applications of Dow products from the standpoint of human health and environmental quality to ensure that Dow products are not used in ways for which they are not intended or tested. Dow personnel are available to answer your questions and to provide reasonable technical support. Dow product literature, including safety data sheets, should be consulted prior to use of Dow products. Current safety data sheets are available from Dow.

LENNTECH info@lenntech.com Tel. +31-152-610-900 www.lenntech.com Fax. +31-152-616-289

WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

"All information set forth herein is for informational purposes only. This information is general information and may differ from that based on actual conditions. Please note that physical properties may vary depending on certain conditions and while operating conditions stated in this document are intended to lengthen product lifespan and/or improve product performance, it will ultimately depend on actual circumstances and is in no event a guarantee of achieving any specific results. Nothing in this document should be treated as a warranty by Dow.

